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Part I : CODE DESIGN

Abstract

The first part of this paper presents a simple and systematic technique for constructing multi-

dimensional MPSK TCM codes. The construction is based on a multilevel concatenation

approach, in which binary convolutional codes with good free branch distances are used as

the outer codes and block MPSK modulation codes arc used as the inner codes ( or the

signal spaces ). Conditions on phase invariance of these codes are derived and a multi-

stage decoding scheme for these codes is proposed. The proposed technique can be used to

construct good codes for both the AWGN and fading channels as is shown in the second part

of this paper.

1. Introduction

Since the publication of the celebrated paper by Ungerboeck in 1982 [1] on trellis coded

modulation(TCM), there has been a boom of research in this area. Over the last fourteen

years, researchers have proposed various techniques of constructing modulation codes using

both convolutional codes (Trellis Coded Modulation (TCM))[1-7] and block codes ( Block

Coded Modulation (BCM))[8-14]. Almost all existing techniques for constructing TCM

codes rely heavily on computer searches to find good TCM codes. These techniques work

very well for small code complexities and rates. However, for large code complexities and

high rates, the search becomes extremely time consuming (if not impossible) and a more



systematic technique of construction is required. Most of the problems associated with alge-

braic construction of TCM codes arise due to the lack of indepth knowledge of convolutional

codes. In addition, the nonlinearity of the mapping function ( true for most signal constel-

lations ) which maps the coded output bits of the convolutional encoder onto the signal set,

complicates the problem further. BCM codes on the other hand, have the advantage of be-

ing extremely rich in algebraic structure and phase symmetry, as has been shown in [10-13].

BCM codes however, have the disadvantage of being slightly poor in performance for low

SNR ( signal-to-noise ratio ), as compared to TCM codes of the same decoding complexity,

due to the large number of nearest neighbors.

Pietrobon et. al. extended Ungerboeck's results to multi-dimensional MPSK signal con-

stellations [3]. They proposed a set partitioning technique for multi-dimensionai MPSK

signal constellations similar to Ungerboeck's set partitioning technique and then used com-

puter search to design multi-dimensional MPSK TCM codes. However, due to the limitations

of computer search, as were outlined above, they restricted themselves to 4 x 2-dimensions.

In addition, to reduce the search complexity, they placed some other restrictions on the

computer search. Multi-dimensional MPSK TCM codes have various advantages over 2-

dimensional Ungerboeck TCM codes, the main ones being: (1) higher spectral e_ciencies

can be achieved; (2) codes constructed over multi-dimensional MPSK signal constellations

have better phase invariance properties than that of 2-dimensional Ungerbo_ck MPSK codes;

and (3) lower average decoding complexities to achieve the same performance.

A common point to be noted among aLl the construction techniques available in literature

( whether TCM or BCM ) is that the modulation codes constructed by these techniques re-

quire large decoding complexity to achieve large coding gains. The large decoding complexity

of these codes makes them impractical for applications where high reliability and high data

rates are required. As such, what is required is a multi-stage decoding technique which

reduces the decoding complexity, while maintaining good performance.

This paper presents a simple and systematic technique for designing multi-dimensional



MPSK TCM codeswith minimal computersearch.The technique will be used to construct

good codes for both the AWGN and fading channels. Though the main emphasis has been to

construct codes for the MPSK signal constellation, the results are applicable to other signal

constellations as well and modifying the existing construction for other signal constellations

is straight forward. This paper is organized as follows: section 2 of the paper presents a new

concept, branch distance of convolutional codes, which will be used extensively in the later

sections. Section 3 outlines the basic construction technique of the proposed codes, and in

addition shows that the codes constructed in [3] turn out to be a special case of the proposed

construction. Section 4 discusses phase invariance. In section 5, a multi-stage decoding

algorithm for the proposed codes is presented and it's decoding complexity is discussed.

Section 6 concludes by discussing the design rules for constructing good codes using the

proposed technique.

2. Branch Distance of Convolutional Codes

For two code sequences u and v in a binary linear convolutional code, the branch

distance between them, denoted rib(U, v), is defined as the number of branches in which u

and v differ ( or equivalently, this is simply equal to the number of non-zero branches in u@v,

where q) denotes binary addition ). For a code sequence u in a binary linear convolutional

code, the branch weight of u denoted wb(u) is simply the number of non-zero branches

in u ( or equivalently w_(u) is the branch distance between u and 0, where 0 refers to

the all-zero code sequence, i.e., w_(u) = rib(u, 0)). The minimum free branch distance of a

convolutional code C, denoted dB.free , is the minimum branch distance between any two

code sequences, i.e.,

z, min{db(u v) : u,v E 6' and'u -fl v} (2.1)riB_free =

Theorem 1: For a rate k/n feedforward binary linear convolutional code of total encoder

memory 7, its minimum free branch distance, dB_free , is upper bounded by 1 + [7/kJ.

Proof: Let the k inputs to the encoder be denoted as 11, Is, ". Ik and let the encoder

3



memories associated with input I_ be 7i for 1 < i < k. Let min{w6(u)) denote the minimum

branch weight among all the code sequences associated with the binary linear convohtional

code. Let mir_= 1 7i = 7S. Consider that the binary sequence (1,0, 0,... ) is fed into the input

I s and the all zero sequence (0,0,0,...) is fed into the remaining inputs. The branch weight

of the resulting code sequence is upper bounded by 1 + 7j. Hence, min{wb(u)) _< 1 + 7S"

Since the code is linear, this also corresponds to an upper bound on the minimum free branch

k

branch distance, i.e., dB.free < {1 + mighty}. Given any 7 and k, the idea is to maximize
k

dB.free. Hence, m_(dB_free ) _< max{1.f.k+ mi__'nTi), i.e., the best dB.free for a given 7 and k
k k

is< {l+max{minT_)). It is readily seen that the value of max{minT_)is [7/kJ. AA
-- "3',k i----1 _,k i_l

Theorem 2: If dB.free = 1 + [7/kJ, then NB_free , the number of codewords with branch

weight riB_free, is lower bounded by (2 p - 1) where p is the number of inputs of the convo-

lutional encoder which have an encoder memory of [.7/kJ associated with it.

Proof: Let ex denote the binary sequence (1,0, 0,...) i.e., 1 followed by the all zero sequence

and let e0 denote the all zero binary sequence (0,0,0,...). Consider any non-zero code

sequence u. Then ws(u) >_ 1 + [7/kJ. Let the p inputs which have an encoder memory of

LT/kJ associated with it be I s for 1 <_ j _< p. Consider that e0 is fed into the inputs I: for

p + 1 <_ j _< k. Also, consider that the inputs I_ for 1 < j < p can take only one of the

two sequences eo or el. Then the convolutional encoder under this constraint has (2_ - 1)

distinct non-zero input sequences. Each of the (2 p - 1) sequences will ha'_,e branch weight

<_ 1 + [7/kJ. Since dB_free = 1 + [7/kJ, each of the (2P - 1) sequences thus has branch

weight 1 + [7/k]. Hence, NB_free > (2P- 1). AA

A binary linear feed-forward convolutional code is said to be optimal in terms of branch

distance if it achieves the upper bound as stated in theorem 1 for a given _/and k. Also, a

code is said to be optimal in terms of the free Hamming distance, dH.free , if it achieves the

maximum dH.free possible for a given % k and rt as specified in [15]. Note, from theorem

1, for a given dB.free , higher encoder memory is required to achieve the same dB.free as

k increases, i.e., given a certain fixed dB.free , there is a tradeoff between complexity and
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rate. In addition, as is shownin theorem2, NB.free also increases as the rate increases and

hence there is also a tradeoff between rate and performance. A search has been performed

on rate-I/2, -2/3 and -3/4 codes to find the best ones in terms of dB-free and NB_free. The

results are given in Tables 1 , 2 and 3.

An important point to note is that codes optimum in terms of branch distance may

not be optimum in terms of the free Hamming distance dH-free and vice-versa. For small

values of 7, it has been observed that codes optimum in terms of branch distance are also

optimum in terms of dH.free , however, the same does not hold for higher values of 7. From

Table 1 we notice that up to 7 = 7, the search yields codes which meet the upper bound

in terms of dB_free , however from that point on, the best codes start falling short of the

upper bound by 1. Codes shown in Tables 2 and 3 meet the upper bound, however as the

complexity increases, NB_free also starts increasing. Also listed in the tables is the dH_free

and NH_free , the number of codewords with dH.free. The code generators in the tables have

been listed in octal with the lowest degree on the left and the highest on the right, e.g.,

(622)s - 1 + D + D 4 + D 7. As an example, consider the 8th code listed in Table 1. This is a

rate-l/2 convolutional code with generators I+D+D 4+D 7 and I+D 2 +D3+D 4+D s+D6+D s

and dB-free = 8.

3. Construction of Multi-dimensional MPSK Codes

The proposed multi-dimensional MPSK codes are constructed using a q' level concatena-

tion approach as shown in Figure 1. Outer codes in the multi-level concatenation may be

either block or convolutional, binary or non-binary. However, in this paper we will focus on

binary convolutional codes as the outer codes.

Outer Codes:

The outer code, C_, at the i-th level for 1 <_ i _< q is chosen to be a convolutional code

of rate _/n_ with optimum branch distance for the given rate and state-complexity. The

parameters k_ and n_ depend upon the choice of the inner codes, as will be clear after the



discussion of inner codes. Each outer code is selected from the tables mentioned in section

2. The reasons for selecting an optimum branch distance convolutional code will be clear

when discussing theorems 4, 5 and 6.

Inner Codes:

Let S denote the two-dimensional MPSK signal constellation which consists-of 2 t signal

points. Let S _' denote the set of all m-tuples over S, where m is a positive integer. Since

S is a two-dimensional signal space, S _ is an m x 2-dimensional signal space in which each

signal point is a sequence of m MPSK signals. To construct the proposed codes, the signal

space is chosen as a subspace of S '_, denoted A0. In this paper, A0 is constructed using the

multilevel coding method proposed by Imai & Hirakawa [8].

Using the set partitioning approach proposed by Ungerboeck in [1], each signal point

in the set S is labeled by a string of symbols from GF(2). Since S contains 2 t signal

points, we shall consider a labeling whose set of label strings is of the following form: L

{a_a2 ... at : ai 6_ GF(2) for 1 _< i <_ t}. Let )_ denote the one-to-one mapping from L

to S. If ala2 ... at is the label for a signal point s, then s = )_(ala2 ... at). Define an

I

addition "+" on the label set L as follows: For two labels, ala2 ... at and a'la'2 ... at, in

B t I II II n fl F

L, ala2 "" at + ala _ ... a t = ala 2 ... a t wherea i = ai _ a i for 1 _<i_<gand_is

the modulo-2 addition. With this addition, L is simply the vector space of all t-tuples over

GF(2). We call L the label space for S.

For 1 < i < t, let Co,i be a binary (m, ko,i, 6o.i) linear block code of length m, dimension

ko.i and minimum Hamming distance/So,i. Let

Vt = (vi,l,vl,2, --- vi,.,)

be a code word in Co,i for 1 < i < t. We form the following sequence :

Vl * V_ • ... • Vt a= (vl,lv2,1... vt, l , vl,_v2,2.., vt,2 , ..., vl,,_v_,,,

(3.1)

• "" vt.,_) (3.2)

For 1 < j < m, we regard vlzv2j.., vij as the label for a signal point sj in the MPSK signal



set S. Then V, * V2 ." * Vt is simply an m-tuple over the label set L and

_(vt • v2 -.. • v_) = (_(m_,,...m),_(_,._,_..._+,2), .-., _(_,,_.,---_+._))

= (_,,s2, ...,s,,) (3.3)

is an m-tuple over the MPSK signalset S ( a sequence of m MPSK signals) which isa

signalpoint in the m × 2-dimensional signalspace ,5''_.From codes C0,_for I < i < l, we

form the followingset of m-tuples over the labelset L :

C0a*Co,2* "" *Co,t={V**V2* -.. *Vt : V16C0a, V26Co,=, "-" Vt6Co#} (3.4)

We will denote Co,1 * Co,2 * "" * Co,t by rio. Then, flo is a vector space ( or a linear code

) over L ( a subspace of the vector space of all the m tuples over L, denoted L _ ). flo has

2ko,_+ko.2+--. +ko,+ vectors. Hence, the dimension of flo is ao = koa + ko,2 + --- + ko#. Recall,

that for 1 < i < q, n+ denotes the number of output coded bits of the convolutional encoder

at the i-th stage of encoding. Choose

nl + n2 + "" +n_ = ko,t + ko,2 + ." + ko,t = ao (3.5)

Suppose each m-tuple in flo is mapped into an m-tuple over the MPSK signal set S by the

mapping A(.). Then, we obtain the following subset of signal points in S'_:

ho _ _(_o) = {_(v_ • v2 -.. • v_) : vt _ Co,t, v2 _ Co,2, --. v+ • Co_}

The set Ao is a subspace of S "_ with dimension Co. This subspace ho is actually a basic

l-level block MPSK modulation code of length m[8-14].

The performance of Ao over the AWGN channel depends upon the minimum squared

Euclidean distance and the number of nearest neighbors. The minimum squared Euclidean

distance of Ao can be calculated using results of [12]. On the other hand, the performance

of Ao over fading channels depends upon the minimum symbol distance, product distance,

number of nearest neighbors and the squared Euclidean distance to a lesser extent [171. The

minimum symbol distance of Ao is given by [17] _ = min_=_ $o,_. Suppose, ho has minimum

squared Euclidean distance A2o and minimum symbol distance _.



In the following,the subspace A0 of S'_willbe used as the signal space forconstructing

multi-dimensional trellisMPSK codes. Before presenting the code construction,we need to

define a subspace of fro for partitioningf/o. For 1 < j < t, letCIj, C2j, ..., C'qjbe a

sequence of linearsubcodes of C0j such that

Let k_j be the dimension and 6ij be the minimum Hamming distance of Cij for I _<i < q.

Then Cij is an (m, kij, 6ia) code. For 1 < i _< q, we form the following linearcode

over the labeling space L: 9tl = Ci,l* Ci,2* ." * Ci,t.The dimension of this code is

ai = k,,1+ ki,2+ ...+ ki,t.lt isclearthat for 1 <i<q,

c_9 -1 (3.7)

It follows from (3.7) that fh, ft2, "-, fl_ form a sequence of subspaces of flo and

flq _Cfly-1 C_ ... c_ ftl c_ flo

For 1 < i < q, let

(3.8)

(3.9)

Let the minimum squared

Itfollowsfrom (3.5)and (3.11)that

¢Yl

¢72

ni=ui-1-ai (3.11)

= n2 +na +--" +nq

= na +... +n_

--" Tlq

=0

Then, A_ is a subspace of S m with dimension dim(Ai) = ai.

Euclidean distance of Ai be A_ and minimum symbol distance be _. Equations (3.8) and

(3.9) imply that A1, A2, -", A_ form a sequence of subspaces of Ao and ,

Aq C Aq-i _C ... _C A1 C_ Ao (3.10)

Suppose the binary codes, Cij with 1 < i < q and 1 < j < l, are chosen such that



12oand its subcodes121,122,'",f/q are used to form a sequence of coset codes [7]. Let

Ux * U2 * ... * U_ be a vector in f/o but not in ill. Then Ux * U2 "-" * Ut + 121 is

a coset of 121 in 12o and U1 * U2 * ... * Ut is called the eoset representative. Recall

t
nl = _;=l (ko,i - kl.i). Hence, there axe 2"' cosets of fll in 12o. These 2 _ cosets of 121 form

a partition of fl0. Let 12o/121 denote the set of cosets in 12o modulo ill. 12o/121 is called a

coset code. Let If/o/f/x] denote the set of coset representatives of the coset code fto/12x.

Hence 12o/flx = If/o/f/:] + f/x. f/l can be further partitioned using 122, in the same way as is

outlined above. Partitioning each coset of 121 in 12o on the basis of fl2, we form the coset code

120/f/x/f/2. Let [121/ft_] denote the set of coset representatives in the partition 121/122. Hence

each coset in the coset code 120/flx/flz can be written in the form [ft0/fh] + [fix/f/z] + f/z.

Proceeding in this manner, we form the following sequence of coset codes:

B1 = 12o/fh
Bz = f/o/12x/fh

Bq = 12o11211  1""1n 

For 1 < i < q, each coset in Bi-x = f/o/f/x/""/12i-x consists of 2 TM cosets modulo fli. These

coset codes are used as the inner codes in the multi-level concatenation in which B1 is used

at the first level and Bq at the q-th level.

!

Let w0 and w o be two distinct points in f/o. If these two points are in two distinct cosets

of Bx then the squared Euclidean distance between s = A(wo) and s'= ,k(w_) is at least Ao2.

g

ff the two points too and wo are in the same coset of B1 but distinct cosets of B_, then the

squared Euclidean distance between s and s' is at least A_. Generalizing in this manner, it

is easy to see that if the two points too and w'o have identical coset representatives in Bj for

1 < j < i, but distinct coset representatives for Bi then s and s' have a squared Euclidean

distance of at least AZi-l. Hence, B1 is the least powerful and Bq is the most powerful coset

code in terms of Euclidean distance.

The same arguments as above will also hold if the minimum squared Euclidean distance

at each stage is replaced by the corresponding minimum symbol distance.

9



Encoding of the m x 2-dimensional TCM code:

Encoding is accomplished in q stages, as shown in Figure 1, and for 1 < i < q, the/-th

level encoding is accomplished in two steps: (1) at any time instant t, a message of ki bits

is encoded based on the convolutional outer code Ci into an hi-bit coded block; and (2) the

n_-bit code block then selects a coset from the coset code Bi = flo/fll/.../fli.-

The output at the i-th level encoder is a sequence of cosets from B_. All the possible

coset sequences at the i-th level form a trellis, and each branch in the trellis corresponds to

a coset in Bi, and this trellis is isomorphic to the trellis of Ci. Let vi denote a code sequence

in the convolutional code Ci and let ¢i denote the mapping from the n; coded output bits

of the convolutional code to the 2 "_ cosets. Hence, _i(Vi) denotes the sequence of coset

representatives at the i-th stage of encoding, corresponding to the code sequence Vl. Hence,

any code sequence in the ra x 2-dimensional TCM code can be written in the form

_(¢,(vi) + ¢_(v2)+ ... + CJVq)). (3.12)

At every time instant t, the encoder puts out m MPSK signals.

A very interesting and special case of the proposed codes occurs when q = 2 and the

second level outer code is left uncoded, as shown in Figure 2. This structure is equivalent

to the structure used for the construction of the multi-dimensional codes in [3]. A computer

search was used in [3] to find the convolutionM code to be used at the first level. The

computer search selected a convolutional code which optimized the multi-dimensional code

both in terms of Euclidean distance and number of nearest neighbors.

A multi-dimensional code is said to be linear with respect to binary addition, if for any

two code sequences in the multi-dimensional code, U = A(_h(ul) + ¢2(u2) + --. + Cq(Uq))

and V = A(¢l(vl) + _2(w-) + .-- + _q(Vq)),

u,_ v _ _((¢1(ul) + ¢2(u2)+ ... + ¢,(Uq)) + (¢_(vl) + ¢_(v2)+ ... + CJv,)))

is also a code sequence, where ul and v! for 1 _< i _< q denote output code sequences of

the convolutional code encoder Ci at the i-th level. Linearity of the code ( in terms of

10



binary addition ) simplifies the error analysis and in addition leads to a simpler encoder and

decoder. The linear structure leads to the following theorems on the linearity, minimum

squared Euclidean distance and minimum symbol distance of the proposed codes.

Theorem 8 : A multi-dimensional code is linear with respect to binary addition, if all the

mappings _, for 1 < i < q are linear. _

Proof : Recall, that any code sequence in a multi-dimensional TCM code can be written

in the form A(¢h(vl) + _2(v2) + ... + _¢(Vq)) where Vl for 1 < i _< q denotes the output

code sequence of the convolutional code Ci at the i-th level. The proof then follows trivially

from the definition of linearity.

Theorem 4 : The minimum free squared Euclidean distance of a coset trellis code at the

_ _ 2 > 2 _J) where d<l_!fre e denotes._th level, for 1 < j < q is lower bounded by D(j),free AJ -1" B-free'

the minimum free branch distance of the convolutional code at the j-th level, C++.

Proof : Consider two distinct code sequences, U = A(qS_(ul) + _2(u2) + .-. + _¢(Uq))

and V = A(_l(Vl) + ¢52(v2) + .-. + q_¢(Vq)), where ul and vl for 1 < i < q denotes two

output code sequences of the convolutional code C_ at the i-th level. Assume that ui = vl for

1 < i < j and uj # vj. At a particular time instant t, let A(w) and A(w') be the corresponding

transmitted signal points for U and V respectively, where w and w' E flo. Since u| = v|

for 1 < i < j and uj # vj, hence o., and w' have identical coset representatives in B_ for

1 < i < j and hence the minimum squared Euchdean distance between J(w') and A(w') is at

2
least Ai_ t. Since Cj has minimum free branch distance _J) hence the two sequences ujB-free'

and vj are distinct in at least d<l_!free branches. Therefore, the squared Euchdean distance

between U and V is at least A__,. agl_!free. AA

Theorem 5 : The minimum free squared Euclidean distance of the overall TCM code is

• 2 J)
lower bounded by Dpree > nunt_<j_<q{A.,i_t, d(]_.free}.

Proof : Consider two distinct code sequences U and V. Using the same notation as

developed in theorem 4, consider that Ul = Vl for 1 < i < j and that uj -_ v 1. Then, theorem

11



4 gives us the minimum squared Euclidean distance between the two sequences. Since j is

arbitrary, the minimum squared Euclidean distance between the two sequences is obtained

by taking the minimum over all the q levels, i.e., if D2(U, V) denotes the squared Euclidean

distance between the two sequences U and V, then D2(U, V) _> minl<j_q{A__ l • _B!free}"

Since U and V are any two sequences, the theorem follows. AA

Theorem 6 : The minimum symbol distance of the overall TCM code is lower bounded by

• j)
_H >_ minl_<i_<q{6_" d(l__free}.

Proof : The proof is similar to that in theorem 5, with the only difference that instead of

minimum squared Euclidean distance we now consider minimum symbol distance. AA

4.A Spectral Efficiency

At each encoding time instant, kl + ks + ... + kq bits are fed into the encoder (Figure

1), and the corresponding output is m MPSK signals. Hence the spectral efficiency of the

rn x 2-dimensional TCM code is (kl + ks +... + kq)/m bits/symbol.

4.B Phase Invariance

Phase symmetry of a code is important in resolving carrier-phase ambiguity and ensuring

rapid carrier-phase resynchronization after temporary loss of synchronization [2]. It is desir-

able for a modulation code to have as many phase symmetries as possible. Recall, that the

proposed multi-dimensional modulation codes are constructed using q convolutional codes

and q + 1 basic t-level block modulation codes (Figure 1). The phase invariance of the
J

proposed codes is a function of both the inner codes and the outer codes. If convolutional

codes are used at all the q levels, the phase invariance of the constructed modulation

codes would depend upon the structure of the convolutional codes used, and for most cases

the constructed modulation codes would have no phase invariance. A special ease of the

proposed codes occurs when the outer code at the q-th level is left uncoded ( figure 2 shows

this special case for q = 2 ). Most of the codes constructed using this special case do have

phase invariance. Kasami et. at. in [16] derived conditions on phase invariance of basic

12



t-level block modulation codes. A slightly modified form of the conditions proposed in [16]

will be applicable to the proposed codes.

The following theorem gives the conditions for the proposed modulation codes to be

phase invariant under rotation for this special case.

Theorem 7: Let A0 = _(Co,,*C0,_* -.. *C0,t) and let A,_, = A(Cq_,,,.Cq_,,2._...Cq_,_),

where C0,_ and Cq-l,_ for 1 < i < l are binary linear block codes of length rn. For 1 < h _< t,

the multi-dimensional MPSK TCM code is phase invariant under 180°/2 l-h phase shifts if

the multi-dimensional TCM code is linear with respect to binary addition and:

1 E Cq-l,h and (4.1)

C0,h" C0,h+l "" C0a-I C Cq-l_/ for h < j _< _ (4.2)

where 1 denotes the all-one binary sequence of length rn, and for two-binary m-tuples a =

(al,a_, ... am) andb=(bl,b2, ... b,,), a.b _= (al.bl,a2.b_, ... ,a,,.b_), wherea;.b_,

for 1 < i < rn denotes the logical product of ai and b_.

Proof: Appendix A

If the outer code at the q-th level is left uncoded, sequences of signal points from Aq-1

are valid code sequences. The best phase invariance that can be achieved for the overall

multi-dimensional code in this case is equal to the phase invariance of Aq-1. The conditions

as stated in theorem 7 provide a set of conditions which guarantee a certain'phase invariance

for the overall multi-dimensional MPSK TCM code independent of the convolutional codes

chosen. Most codes designed using the proposed technique, do achieve the best possible

phase invariance (i.e., of Aq-1 ).

5. Multi-stage Decoding Algorithm

One obvious way of decoding a TCM code proposed in section 3, is to form a super

trellis for the code, which is obtained by taking the direct product of the trellises of the

convolutional codes at the q levels. The complexity associated with this technique ( for most

cases ) would be tremendous. We will focus on a multi-stage decoding scheme, in which the

13



deooding is carried out in q stages, corresponding to the q levels of the multi-dimensional

TCM code. Let V = (_l,s2,s3,...) be the transmitted code sequence, where sl for 1 <_

i < oo denotes a signal point in the MPSK signal constellation and let R = (rl,r_,r3,...)

denote the corresponding received sequence. Using (3.12), V can he written in the form

V = A(¢l(vl) + ¢2(vz) + "" + ¢¢(Vq)) where vl for 1 < i < q denotes a code sequence in

the convolutional code Ci.

First stage of decoding:

At the first stage, vl is estimated using the received sequence R. Recall, that at the

first stage of encoding, the trellis is isomorphic to the trellis of the convolutional code C1

used at the first level, with each branch of the trellis corresponding to a coset in B1. Each

coset in Ba can be written in the general form _ + f/l, where _ E [rio/fill. Let us call this

isomorphic trellis C'1. Hence, each branch of C'1 consists of 2 °1 points, corresponding to the

2 °1 points in fh. The trellis (71 is used to form the trellis A((_I), where

: v E (5.1)

The trellis _(C1) will be used for decoding at the first stage. Any code sequence in _(C_)

can be written in the form

+ (5.2)

where ul is a code sequence in C1 and wl is a sequence of points fronl fh, i.e., wl =

{(w_,_,w_,2,w_,a,...) :w_# E n_ for 1 < i < oo}. Standard soft-decision Viterbi decoding _ is

performed on R using the trellis A((_,). This yields a code sequence A(¢1(_'1)+&l) in A(C1)

which is closest to the received sequence R in terms of squared Euclidean distance. The code

sequence vl forms an estimate of the sequence vl. &l denotes a sequence of points from f/l.

Since vl is a code sequence in C1, the estimate of the information sequence associated with

the first level can be obtained from vl.

aWe will use minimum squared Euclidean distance as the decoding metric for both the AWGN and fading
channels.
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The i-th stage of decoding:

The second and subsequent stages of decoding are very similar to the first stage of

decoding. For 2 < i < q, let us consider the i-th stage of decoding. The previous i - 1 stages

of decoding give us estimates of vj, denoted by ¢,) for 1 < j _< (i - 1). Using arguments

similar to that given above, we form the isomorphic trellis Ci, where any code_sequence in

(_ can be expressed in the general form

¢1(%) + + ... + ¢,-1(÷,-1) + ¢,(ui) + (5.3)

where ui is a code sequence in the convolutional code at the i-th level, Ci and toi is sequence

of points from _i. Each branch of (_i consists of 2a_ points, corresponding to the number of

points in 9tl. The trellis 6'i is used to form the trellis 2(C;), where

: v (5.4)

The trellis A(6'_) will be used for decoding at the i-th stage. Standard soft-decision Viterbi

decoding is performed on R using the trellis A(C_). This yields a code sequence

A(¢,(_) + ¢2(;,_) + --- + ¢,_,(_,_,) + ¢,(_,) + a,,) (5.5)

in )_(Ci) which is closest to the received sequence R in terms of squared Euclidean distance,

where vi is a code sequence in the convolutional code used at the i-th level, Ci, and &i is

a sequence of points from _i. The code sequence vi forms an estimate of'the sequence v i.

Since ¢ti is a code sequence in Ci, the information sequence associated with the i-th level can

be obtained from ¢q.

The branch metric ( squared Euclidean distance ) for each branch in )_(G'_), 1 < i < q,

is calculated by taking the m received signals corresponding to that branch and finding the

element in the coset corresponding to that branch, which is closest to the m received signals

in terms of Euclidean distance. This process of finding the closest element in the coset is

termed as closest coset decoding. The Euclidean distance corresponding to the closest

element in the coset becomes the branch metric. If m is small, calculation of the branch
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metric does not represent a formidable task, however if m is large and if fl;, 1 < i < q, has

trellis structure then a trellis can be used to calculate the branch metric. In addition, if the

number of states associated with the trellis structure of fli is big, multi-stage decoding for

fl, can be used to further reduce the decoding complexity. Multi-stage decoding of fli would

be carried out in the same way as proposed in [10, 11l. _

Another way of reducing the decoding complexity associated with closest coset decod-

ing would be as follows: Consider a trellis ¢_sup, where any code sequence in the trellis _,sup

can be written in the following form:

osupwhere _.,sup is a sequence of points from .._ , and the rest of the sequences are as before.

f_supIf fli C --i then the trellis (7i is a subcode of the trellis _sup. As such, instead of using

(7_ we can use (7sup at the i-th stage of decoding, fl,sup can be chosen to have a simpler

trellis structure as compared to that of fli. This would reduce the complexity associated

with closest coset decoding and hence reduce the decoding complexity associated with

the i-th stage of decoding.

Multi-stage decoding leads to error propagation. To reduce the effect of error propagation,

the first couple of decoding stages should be powerful. A special case of the decoding

algorithm occurs for q = 2 and k2 = n2. If closest coset decoding at the first stage is

carried out in a single-stage, then the overall decoding of the multi-dimensional code is also

one-stage. If m is small, then one-stage closest coset decoding is feasible, however if

m is large, multi-stage closest coset decoding could be adopted to reduce the decoding

complexity. The overall decoding in the latter case would then be multi-stage.

Decoding complexity of the proposed decoding algorithm :

The complexity of the proposed schemes will be measured in terms of the number of

computations required for the decoder to produce an estimate of each 2-dimensional PSK

signal. For 1 < i < q, let 7i be the total encoder memory of the convolutional code used at

16



the i-th level in the proposed scheme. Consider the i-th stage d decoding. Then, due to the

Viterbi algorithm alone, the complexity is 2 "_'+k_ additions and 2"r'(2 k' - 1) comparisons, per

m × 2-dimensions ( since each branch has m MPSK signals ). The branch metric calculation

forms an additional complexity and depends upon the choice of the inner codes. Let us call

this complexity Bc,. Hence the total complexity per m x 2-dimensions is : (1)_ _q=l 2_+k'

additions; (2) q 2"Y'(2k' - 1) comparisons; and q_i=1 Be,. Dividing this total complexity_i----1

by m would give us the number of computations required per 2-dimensions (i.e., the number

of computations required to decode a single MPSK point ).

6. Design Rules for Good Codes

The performance of codes designed using the proposed technique depends upon vari-

ous factors. If all the design considerations are followed strictly, the codes usually would

achieve good performance and in some cases, with reduced decoding complexity. Some of

the most important design considerations are: (1) the number of levels q, in the multilevel

concatenation should be kept as low as possible. The advantages of this are twofold. First,

reducing the number of encoding levels, would reduce the number of decoding stages and

in most cases reduce the decoding complexity. Secondly, reducing the number of decod-

ing levels also decreases the amount of error propagation which occurs as a result of the

multi-stage decoding. To reduce the error propagation due to multi-stage decoding, the first

few levels should be chosen extremely powerful, so that the amount of error propagation

is decreased. This however leads to higher decoding complexity for the first few levels; (2)

the number of dimensions, i.e., m × 2, should be kept an low as possible. As m increases

the number of nearest neighbors associated with the code also start increasing, which limits

the performance of the code. On the other hand, increasing m usually helps in decreasing

the normalized decoding complexity associated with the code; (3) theorem 5 gives us the

minimum squared Euclidean distance of the overall multi-dimensional TCM code. For a

given minimum squared Euclidean distance of the TCM code, dB_free of the convolutional

codes chosen to form the multi-dimensional TCM code should be chosen to be as small as
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possible. Lower dB.free would imply lower decoding complexity associated with the convo-

lutional code decoding. The above also holds for theorem 6; (4) the branch computation

complexity Bc, at the i-th stage of decoding depends upon Ai. If Ai is chosen to have a

simple trellis structure, the corresponding branch computation complexity will be minimal.

If on the other hand, the trellis for Ai is sufficiently complex, techniques described in section

5 can be used to reduce the computation complexity. These techniques however, usually

lead to degraded performance; (5) construction of codes with good phase invariance, places

restrictions on codes as per theorem 7 and hence in most cases this would limit either the

performance and/or the achievable spectral efficiency.

Most design considerations mentioned above lead to conflicting requirements. Hence,

there is a tradeoff involved between performance, decoding complexity, spectral efficiency

and phase invariance.

Appendix A

Proof of theorem 7: The proof follows very closely the derivation of the phase inv_iance

conditions in [16]. For the code to be phase invariant by 180°/2 t-_, any code sequence in the

multi-dimensional code when rotated by 180°/2 t-h should produce another code sequence.

Let V be the transmitted code sequence. Let V r°t denote the code sequence V rotated

by 180°/2 t-h. Recall from section 3, that the basic building block of the proposed multi-

dimensional codes is A0, hence any valid code sequence in the multi-dimehsional code can

be considered to be a sequence of points from A0. Consider the j-th time instant. Let

Vj = _(VIj * V_j • ... • Vtj) be the transmitted sequence of ra MPSK signals at the j-th

time instant, where, Vlj E Co,i for 1 < i < t. Also, let V_ °t _l_rrot ._rrot _ ._rrot_= ^_--lJ --2J _ "'" _--td y

be the sequence of m MPSK signals for V r°t at the j-th time instant, where, V_'j°t E C0,i

for 1 < i < t. Using results of [16], V_ °t can be written in the following form :

# I

V_ °t = A((V1j + V_j) • (Vzj + Vzj ) * .-- • (Vtj + Vtj)), (A.1)

whereVij=0forl <i<h, Vhj=landVij=Vhj.Vh+lj...Vi_ljforh<i<gand
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0 denotes the all-zero sequence of length m. Form the sequence V', such that the j-th time

instant of V' is:

t I _ 0Vj = A(VIj • V j.... • V,j) (A.2)

Then, for the code to be phase invariant under rotations of 180°/2 t-h, V' should also be a

valid code sequence. Sequences of signal points from Aq-i form a valid code sequence. Hence,

if V i E Aq-i then V is phase invariant under rotations of 180°/2 L-h, i.e., if 1 E Cq-l,h and

Vhj" Vh+zj"-V|_lj E Cq-l,_ for h < i _< i, (A.3)

then V is phase invariant under phase rotations of 180°/2 e-h. Since the above should hold

for any transmitted sequence V, the theorem follows.
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Table 1 Optimum Branch Distance Rate 1/2 Codes

I *1 G

4 32 )a

62)5 35 s

( 44)7 532 s

8 575 s

(355)9 6244 a

¢ 3576
10 I

_, 6322 j s

dB-fr_ t ] NB-free a ] dH-fr_ u ] NH.fre e,

2

6 2 7 3

7 4 8 2

8 6 9 2

8 1 10 4

9 1 ll 2

10 3 12 2

t : Total encoder memory

: Minimum free branch distance

/x : Number of codewords with branch distance dB_free

u : Free Hamming distance

* : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of xyz

is 4 • z + 2. y + z and z, y and z denote 3 binary bits.



Table 2 Optimum Branch Distance Rate 2/3 Codes

10

G

24 ,,_
04

0 54

54 74 14¢] a

76 26 430_ /
64 0 a

55 ]_75 5766 64

dn.f,._ ' I Nn.fr_" I dH.f,._" ! NH.f,.,*

2 4 3 2

3 5 3 1

4 7 6 3

5 14 6 1

3O 6

t : Total encoder memory

: Minimum free branch distance

: Number of codewords with branch distance dB_free

u : Free Hamming distance

* : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of zyz

is 4. x + 2. y + z and z, y and z denote 3 binary bits.



Table 3 Optimum Branch Distance Rate 3/4 Codes

6

9

G

'0662_6624

k 6 2 2 2)s.
'7104_

5717

_0 5 6 7is
¢ 74 2 34 0 _

44 7 74 74 1

54 0 4 74 j
F

dB_fre e I ! NR-free. z_ I rill-free [I I NH.free"

11

16

3O

3

5

5

_.3

t : Total encoder memory

t : Minimum free branch distance

_' : Number of codewords with branch distance dB_free

u : Free Hamming distance

" : Number of codewords with Hamming distance dH_free

Note: The code generators have been listed in octal, where the octal representation of zyz

is 4 • z + 2. V + z and z,/,, and z denote 3 binary bits.
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Part II

CODES FOR THE AWGN AND FADING CHANNELS

Abstract

In this paper, we will use the construction technique proposed in the previous part to con-

struct multi-dimensional TCM codes for both the AWGN and the fading channels. Analyti-

cal performance bounds and simulation results show that these codes perform very well and

achieve significant coding gains over uncoded reference modulation systems. In addition,

the proposed technique can be used to construct codes which have a performance/decoding

complexity advantage over the codes listed in literature.

1. Introduction

As was pointed out in part one of the paper, for modulation codes over the AWGN

channel, the main parameter of interest is the minimum squared Euclidean distance between

the transmitted code sequences and the number of nearest neighbors. Detc'tils on the above

parameters are available in [1,2] and as such, we will not reiterate these design considerations

here. The aforementioned design considerations will be the basis of construction of the

modulation codes for the AWGN channel in this paper.

If the channd is changed to a fading channel, most codes designed for the AWGN channel

no longer perform well, simply because the design parameters of a modulation code which

need to be optimized for the fading channel are different from that for the AWCN channel.

For the fading channel, we shall consider two scenarios. For the first case, we shall consider





the Rayleigh fading channel with slow fading, coherent detection, no channel state informa-

tion, independent symbol fading and minimum squared Euclidean distance as the decoding

metric. These assumptions have been considered, so as to enable us to compare our codes

with the ones listed in literature. Examples 3 and 4 construct codes for this scenario. For

the second case, we consider the MSAT channel with Light shadowing. Example 5 constructs

a code for this case.

We would like to add, that the code construction technique is universal and is by no means

restricted by the aforementioned assumptions. For the fading channels in general, the error

performance of a code primarily depends on its minimum symbol distance, minimum product

distance and path multiplicity. It depends on the minimum squared Euclidean distance to

a lesser extent. Detailed discussion on these parameters of interest is given in [3, 4] and

as such, we will not reiterate these design considerations here. The dominant parameter

of interest is however the minimum symbol distance, and as such we will concentrate on

optimizing this parameter, when we construct codes for the fading channel.

This paper is organized as follows: In section 2 of this paper, we will derive general

analytical bounds on the performance of the modulation codes using the multi-stage decoding

techniques proposed in part one of this paper. In section 3, we will construct examples using

the proposed technique and compare them with the codes Listed in literature.

2. Performance Analysis

In this section, we will derive a general expression for the bit-error-probabiLity of the

multi-dimensional TCM codes decoded using the multi-stage technique proposed in section

5 of part 1.

For 1 _< i < q, let Xi be a random variable, where the value of Xi denotes the number

of bit errors at the i-th decoding stage at a particular time instant t. Hence, 0 _< X_ < k;.

Then, the bit-error-probability of the multi-dimensional TCM code, denoted Pb(e), is:

q q q

Pb(e)=E(_-_X_)/_-_k,=(E(XI) + E(X2) + ... +E(Xq))/_'_k, (2.1)
i=1 i=1 i=1



where E (-) denotes the expectation operator. For 2 < i < q, E (X_) can be broken up

into two terms, the first one being the expected number of errors at the i-th stage assuming

that the previous i - 1 stages of decoding are correct and the second one being the expected

number of errors at the i-th stage due to erroneous decoding at either one of the previous

i - 1 stages of decoding, i.e., the error propagation term. Hence,

E (Xi) < (E (X,)[erro r propagation" PE,) + E (X,)li-th stage error (2.2)

where E (Xi)[error propagation denotes the error propagation term, PE; denotes the proba-

bility of error propagation from the previous stages and E (Xi)li-th stage error denotes the

term due to erroneous decoding at the/-stage, assuming that the previous i - 1 stages of

decoding are correct. Hence, (2.1) can be rewritten in the following form:

q q q

Pb(e) < (_[[_(E (X')lerror propagation" PE,) + _-_(E (X,)[i_th stage error))/_ k, (2.3)
i=2 i=1 i=1

Except for a few specific cases, it is not possible to obtain a general expression for the

expected number of bits in error due to error propagation. The expected number of bits in

error due to error propagation, depend on both the choice of the inner codes as well as the

outer codes, as will be shown in the examples to be discussed later in this paper. As such,

we will therefore derive a general expression for the rest of the terms in (2.3).

Let V be the transmitted code sequence. Using (3.12, part 1) V can be written in the

form, A(¢l(vl)+ ¢2(v2)+ "-- + fq(Vq)), where vi for 1 < i < q denotes a code sequence in

the convolutional code at the i-th stage, Ci.

J

For 1 < i < (q - 1), let us consider the term E (X_)]i_th stage error" Recall from section

5 ( part 1 ), that at the i-th stage of decoding, we form the trellis A(6';), where a code

sequence in A((_,) is of the form, A(¢,(_'1) + ¢2(g'2) + ... + ¢;-1(_'i-1) + ¢,(ul) + ca,),

where Ul is a code sequence in the convolutional code at the i-th level, C;; wi is sequence

of points from _ and for 1 _< j < (i - 1), _j denotes the estimate of vj.

considering the term E (X_)li_th stage error , _'._ = vj for 1 _< j < (i - 1).

is a linear code, the code sequence u| can be written in the form, ui = vi

Since we are

Also, since C_

+ e, where e



is code sequencein C_. As such, any code sequence in ),(6';) can be rewritten in the form,

= A(¢l(vl) + _(v2) + "" + $_-1(vi-1) + $,(vi + e) + ,,,). Say, that the decoder at the

i-th stage of decoding decodes the code sequence associated with the convolutional code to

be vi + e, and let the probability that the event occurs be Pe. The exact expressions for Pe

can be found in [1, 2] for the AWGN channel and in [3] for the Rayleigh fading channel. Let

Ie denote the number of non-zero information bits associated with the sequence e. Then

the expected number of bits in error ( per decoding time instant ) due to the sequence e is

Ie "Pe. Since e is any arbitrary code sequence in the convolutional code U;, the total number

of bits in error at the i-th stage, E (X_)li-th stage error is obtained by considering all the

possible code sequences and adding up all the le'pe terms, i.e.,

E (X,)[i_th stage error -< _ Ie'pe (2.4)
eEC,

where Ci denotes the set of allthe code sequences in the convolutionalcode, C_.

Special Case - AWGN Channel: For the resultsderivedabove, letus considerthe special

case when the channel isAWGN. Let V be the transmitted code sequence and let_" be the

decoded code sequence. Both these sequences have the form as given earlier.Let De2 denote

the minimum squared Euclidean distance between V and V. Since vj for 1 _< j < (i - 1)

is arbitrary, De2 has been taken to be the minimum over all possible transmitted code

sequences for a fixed e. This is the worst case scenario, and as such the minimum squared

Euclidean distance De2 gives us an upper bound on the performance of the code. Also,

let Ne be the number of codewords at a squared Euclidean distance of De2 from V. The

probability that V is decoded incorrectly depends upon both De2 as well as Are [2]. The code

sequences v! and e can be written in the general form, v i = (vi,l,vi,2, ... ,vim," ") and

e = (el, e_, .-. , ep,.-.) where vl,p and ep for 1 < p _< oo denotes the output sequence ( n¢

bits ) of v i and e respectively at the p-th time instant. The minimum squared Euclidean

distance between _r and V at the p-th time instant depends only on ep and let this squared

Euclidean distance be denoted by D 2 Also, let N,p be the corresponding number of nearest

neighbors [2]. Then, De2 = _°=1 D 2 and Are = [I_°=, N,,. De2 and Are can be evaluated usingep



the technique proposed in [2].

E (Xq)[q_th stage error depends on whether the q-th level of encoding uses a convo-

lutional code or is left uncoded. If a convolutional code is used at the q-th level, then

the expressions for E (Xq)[q_th stage error are the same as those derived above. However,

if the q-th level is left uncoded then E (Xq)[q_t h stage error can be upper bounded as:

E (Xq)[q_t h stage error -< BEP_-kq, where BEP_ denotes the decoding error probability (

i.e., the block error probability ) for the last stage of decoding, i.e., the block of kq bits at

the q-th stage of decoding would be declared to be in error if at least one of the bits is in

error. The block error probability would depend on the decoding algorithm used at the q-th

stage, i.e., single-stage or multi-stage. The block error probability can be calculated using

results of [5].

A very interesting and special case of the results derived above occurs when q = 2 and
i

the second level outer code is left uncoded, as shown in figure 2 ( part 1 ). For this special

case, we can get a closed form expression for Pb(e). Using (2.1) and (2.2), Pb(e) can be

written in the form,

2

Pb(e) < ((_--_ E (X_)[ i stage error) + (E (X2)[error propagation)" p_)/(kl + k2), (2.5)
i=1

E (X1)[X_st stage error can be derived using (2.4). E (X2)[2_nd stage error can be upper

bounded as, E (X2)[2-nd stage error -< BER2 • k_. Let V be the transmitted code sequence.

Then, using (3.12, part 1 ), V can be written in the form, A(¢l(vl) + ¢,'2) where Vl is a code

sequence in the convolutionaJ code used at the first level, C1 and w2 is a sequence of points

from _2. Let the decoded code sequence associated with the convolutional code be Vl + e,

where e is a code sequence in C1. pe gives us the corresponding probability of this event.

Let wb(e) denote the branch weight of e. Hence, the error sequence e will cause at most "

wb(e) blocks of k2 bits at the second stage to be in error, i.e., the number of bits in error at

the second stage of decoding, due to the error sequence e is < k2 • w_(e). Using arguments

similar to those used to derive (2.4), (E (X2)]error propagation" P_) can be upper bounded

as, (E (X2)[erro r propagation" P_) -< ZeeC_ k2" wb(e).pe.



3. Examples

Examples 1 and 2 construct codes for the AWGN channel, examples 3 and 4 construct

codes for the Rayleigh fading channel and example 5 constructs a code for the light shadowed

mobile satellite communication (MSAT) channel. In the following, we will use (n, k, d) to

denote a linear block code of length n, dimension k and minimum distance d. _

Example 1: Consider the case of rn = 8, q = 2 and choose S = 8PSK. Hence g = 3.

Figure 1 shows the two-dimensional 8PSK signal constellation of unit energy, in which each

signal point is uniquely labeled with 3 bits, abc, where a is the first labeling bit and c is

the last labeling bit. The labeling is done through signal partitioning process [1]. Choose

C0,1 = (8,4,4) Reed-Muller (RM) code, C0,2 = Cl,2 = (8,7,2) code, C0,3 = C1,3 = (8,8,1)

code and C1,1 = (8, 1,8) code. The minimum squared Euclidean distance of A0 = A(12o) is

2.344 and for A1 = A(fll) is 4.0 [5]. The encoder structure will be the same as that in figure

2 ( part 1 ). A rate-2/3 code will be used at the first level. Two choices will be considered

for the convolutional code at the first level. The first choice is the 4-state, dB_free = 2 code

from Table 2 ( part 1 ) and the second choice is the 16-state, dB_free = 3 code from Table

2 ( part 1 ). The phase invariaace of the resulting code is the same for both the choices

and is 45 ° and can be derived by a straightforward application of theorem 7 ( part 1 ). The

spectral efficiency is also the same for both the choices and is equal to (16 + 2)/8 = 2.25

bits/symbol. The mapping ¢1 used is linear. Details of ¢1 have been omitted due to lack of

space. The following gives a detailed discussion for both the choices :

4 state: The minimum squared Euclidean distance of the code is (refer theorem 5, part 1):

rain{4.0, 2.344.2} = 4.0. Using (3.12, part 1), any code sequence in the super trellis can be

written in the form, A(¢1 (Vl)+ wl) where Vl is code sequence in: the 2/3- rate convolutional

code used at the first level, and wl is sequence of points from 121. As such, the super trellis

for this code is isomorphic to the trellis of the convolutional encoder used at the first level,

with each branch of the trellis consisting of 218 parallel transitions corresponding to the 216

elements of 1ll. 1"11has a 4-state, 8-section trellis diagram [5]. Each branch of the super



trellis can be expressed in the form, A(wo + l'l,) where wo E [flo/fl,]. Hence, each branch

of the super trellis has a 4-state, 8-section trellis, which is isomorphic to the trellis of fla.

Standard Viterbi decoding can be used on every branch of super trellis using this 4-state,

8-section isomorphic trellis to find the most probable parallel transition. The trellis of

the overall multi-dimensional code can thus be viewed as a nested trellis diagram, i.e., a

trellis within a trellis.

A reduction in the decoding complexity can be achieved by using the multi-stage de-

coding algorithm proposed in section 5 ( part 1 ). The decoding now proceeds in two stages.

Let V be the transmitted code sequence. Using (3.12, part 1) V can be written in the form,

A(¢1 (vl) + ¢o}r) where v, is a code sequence in the convolutional code C1 used at the first

level, and w} r is a sequence of points from _. At the first stage of decoding, we form the

r_sup r_sup suptrellis "-'l where any code sequence in ,_, can be written in the form ¢1(ul) + wx ,

c)supwhere ao_up denotes a sequence of points from .ox and ul isa code sequence in Ci. The

f, sup osupdetails of how the trellis ,-'1 is formed were mentioned in section 5 ( part 1 ). ,_1 is cho-

c_sup = (8, 1,8) * (8, 8, 1) * (8, 8, 1) which has a very simple 2-state trellis structure.sen to be: "_1

On the other hand, 12, has a 4-state 8-section trellis diagram which is more complex than

osupthe trellis structure of .., . This helps in reducing the closest coset decoding complexity

associated with the first stage of decoding. Standard Viterbi decoding is performed on the

received sequence using the trellis A(C sup) to obtain an estimate of Vl, denoted _,_. This

completes the first stage of decoding.

At the second stage of decoding, we construct the trellis C2 where a code sequence in _'2

is of the form, ¢1(_'a) +wl where wx denotes a sequence of points from fll. Consider the p-th

time instant. The structure of C'2 at the p-th time instant is of the form, C'_,p = ¢1('_1a,) +fit

where ¢tla, is the component of _'1 at the p-th time instant. This trellis C'2,p is isomorphic

to the trellis fll and this trellis can be used to obtain an estimate of w tr where w tr is the
1,p, 1,p

term in oa_r corresponding to the p-th time instant.

The decoding complexity associated with the second stage of decoding can be further
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reduced by using the 3-stage decoding technique for fll proposed by Sayegh [6] and Tanner

[7]. We will carry out the second stage of decoding using the 3-stage decoding technique

mentioned above 2

The multi-stage decoding algorithm does lead to a slight degradation in performance,

however, as will be shown in the performance curves, the loss is negligible as compared to

the reduction in complexity. The following gives the number of computations associated

with both the optimal and the multi-stage decoding algorithm for the 4-state trellis. The

complexity calculation for the multi-stage decoding algorithm has been carried out assuming

the 3-stage decoding for the second stage, as mentioned above.

Computation Complexity - Optimal Decoding Algorithm: 3'I = 2 and kl = 2.

The branch decoding complexity Be, is: (1) since there are eight 8PSK points per branch,

the distance computation complexity per branch is 64; (2) survivor calculation for the parallel

branch transitions in 121 requires 32 compares; and (3) the Viterbi decoding for _1 requires 52

adds and 27 comparison to calculate the final survivor ( assuming the survivor for the parallel

transitions has been found ). Since there are 8 cosets, the total complexity is 416 adds and

216 compares, i.e., Bol = 416 adds + 248 compares + 64 distance computations. Hence,

total complexity is 54 adds + 32.5 compares + 8 distance computations per 2-dimensions.

Computation Complexity - Multi-stage Decoding Algorithm: 71 = 2 and kl = 2.

The branch decoding complexity is:

First stage of decoding: (1) there are eight 8PSK points per branch, hence the distance

computation complexity per branch is 64; (2) the sub-optimal distance estimates [7] require

osup
48 compares; (3) Viterbi decoding of ._, requires 14 adds and 1 compare. Since there are

8 cosets, the total complexity is 112 adds and 8 compares.

Second stage of decoding: (1) the multi-stage decoding technique requires 26 adds and

13 compares. Hence, total complexity is 19.25 adds + 10.125 compares + 8 distance com-

2Note, the first stage of the 3-stage decoding process for f21 can actually be combined with the first stage
of decoding of the TCM code, i.e. the stage which uses the trellis C'_Iup.



putations per 2-dimensions.

Figure 2_howsthe simulationresultsof the bit-error-performanceof both theoptimal and

the multi-stage decodingalgorithm. An upper boundon the bit-error-rate of the proposed

codeis also shownin figure 2. Detailsof the bound havebeenomitted due to lackof space.

Also shownin the figure is the bit-error-performanceof a hypothetical uncoded.PSKsystem

of the samespectral efficiency[9].

Figure 2 showsthat the multi-stageand optimal decodingcurvesconvergearoundEb/No =

8dB, and the performance of the optimal curve is only slightly better at low SNR. The pro-

posed code achieves a coding gain of 2.8 dB at the decoded bit-error-rate of 10 -8 over the

uncoded reference system of the same spectral efficiency [9]. In addition, the decoding com-

plexity of the optimal decoding algorithm is roughly about 3 times the decoding complexity

of the sub-optimal one.

Pietrobon et. al. do not have a comparable code over 8 × 2-dimensions, hence comparison

will be made with a 4 x 2-dimensional code over 8PSK with 7 - 2 and phase invariance

= 45 °. Spectral efficiency of this code is 2.25 bits/symbol, same as that of the proposed

code. The performance curve of this code, taken from [11], has also been shown in the

figure. The complexity of the Pietrobon code is 24 adds + 17 compares + 8 distance

distance computations per 2-dimensions. As can be seen from the figure, the proposed

code outperforms the Pietrobon code by roughly 0.4 dB at 4.10 -6 bit-e/'ror-rate, and in

addition, the complexity of the proposed code with multi-stage decoding is less than that of

the Pietrobon code.

16 states: The minimum squared Euclidean distance of the code is (refer theorem 5, part

1) min{4.0, 2.344.3} = 4.0. The super-trellis in this case is very similar to the 4-state trellis

discussed above, with the ouly difference that the 4-state convolutional code at the first level,

has been replaced by the 16-state trellis. Both the optimal and the multi-stage decoding

techniques will be investigated for this case also. The complexity associated with the optimal

and the multi-stage decoding technique are:

9



Computation Complexity - Optimal Decoding Algorithm: 71= 4 and kl = 2.

The branch decoding complexity Be1 is the same as the 4-state case. Therefore, total

complexity is 60 adds ÷ 37. compares + 8 distance computations per 2-dimensions.

Computation - Complexity - Multi-stage Decoding Algorithm: 71 = 4 and kl = 2.

The branch decoding complexity is the same as the 4-state case. Therefore, total com-

plexity is 25.25 adds ÷ 14.625 compares -t- 8 distance computations per 2-dimensions.

Figure 3 shows the bit-error-performance of the both the optimal and the sub-optimal-

decoding algorithm. An upper bound on the bit-error-rate of the proposed code using the

multi-stage decoding algorithm is also shown in figure 3.

Figure 3 shows that the multi-stage and the optimal decoding curves exhibit the same

characteristics as the 4-state case. The two curves converge around Eb/No = 6.54 dB, and

the performance of the optimal curve is only slightly better than the optimal curve at low

SNR. The proposed code achieves a coding gain of 3.2 dB at the decoded bit-error-rate

of 10 -6 over the uncoded reference system of the same spectral efficiency [9]. In addition,

the decoding complexity of the optimal decoding algorithm is roughly about 2.5 times the

decoding complexity of the multi-stage one.

Pietrobon et. al. do not have a comparable code over 8 x 2-dimensions, hence comparison

will be made with a 4 × 2-dimensional code over 8PSK with 7 = 3 and phase invariance "-

45 ° . Spectral efficiency of this code is 2.25 bits/symbol, same as that of the proposed code.

The performance curve of this code, taken from [8], has also been shown in the figure. The

complexity of this code is 48 adds + 32 compares + 8 distance distance computations per

2-dimensions. The performance of the proposed code is slightly better than the Pietrobon

code and in addition the complexity of the Pietrobon code is about 2 times higher than that

of the proposed code with multi-stage decoding.

The 16-sta_e proposed code with the multi-stage decoding algorithm achieves better

performance than the 4-state proposed code with the multi-stage decoding algorithm at the
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cost of slightly increased decoding complexity. The improvement in performance is due to

the higher minimum squared Euclidean distance of the first decoding stage of the 16-state

code. This leads to better performance at the first decoding stage and as a result reduced

error propagation onto the second decoding stage.

Example 2: Consider the case ofm = 16, q = 3 and choose S = 8PSK. Hencee = 3.

Choose Co,1 = (16,4, 8) code. This code is obtained from the first order Reed-Muller code

of length 16, by removing the all ones vector from the generator matrix of the (16, 5) code.

Choose C2,2 = (16,11,4) RM code, Co,_ = C0,z = C,,_ = C,,a = C2,3 = (16,15,2) code and

C1,1 = C2,1 = (16, 0, oo) code, i.e., the code consisting of just the all zero codeword. The

minimum squared Euclidean distance for A0 = A(fl0) is 4.0, for A1 = A(fll) is 4.0 and for

A2 = A(fl2) is 8.0 [5]. A rate-3/4 code with 64-states ( second code in table 3 of part 1 )

will be used at the first level. Let us call this code C1. The same rate-3/4 code used at the

first level will be used at the second level. Let us call this code C2. The phase invariance of

the resulting code is 90*. The spectral efficiency is equal to (3 + 3 + 26)/16 = 2 bits/symbol.

The mappings Cx and ¢2 used at the first and second encoding levels respectively have been

chosen to be linear. The minimum squared Euclidean distance of the code is at least (refer

theorem 5, part 1), min{8.0 , 3 • 4.0 , 3 • 4.0} = 8.0. Note, that the theorem gives the

minimum squared Euclidean distance associated with the first encoding stage to be at least

12.0. A quick verification of the partitions given above show that the minimum squared

Euclidean distance is actually 3 x 8 x 0.586 = 14.064. This is obtained by considering the

squared Euclidean distance due to the (16, 4) code of O.o and multiplying it by the free

branch distance of C1.

Optimal decoding of the multi-dimensional code would require a trellis with 26 •26 = 212

states. Optimal decoding of the code using this 4096 state trellis would be extremely complex,

and as such we will focus on the multi-stage decoding technique proposed in section 5 ( part

1 ). The multi-stage decoding of the multi-dimensional code proceeds in 3 stages.

Let V be the transmitted code sequence. Using (3.12, part 1) V can be expressed in
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the form, A(¢l(vl)+ es(v2)+ cos)wherevl is a codesequencein the 64-stateconvolutional

code C1, v2 is a code sequence in the 64-state convolutional code C2 and w2 is a sequence

of points from 122.

First stage of decoding: To simplify the trellis decoding complexity associated with the

,,=,supfirst stage of decoding, instead of forming the trellis 6'1 we form the trellis '-'1 ._, where any

supcode sequence in 0 sup can be written in the form ( refer section 5, part 1 ), ¢1(ul)+wl

osup osupwhere ¢o_up is a sequence of points from "_1 and ul is a code sequence in C1. "_1 is

osup°sup (16,0, oo)*(16,16,1)*(16,16,1) _olchosen to be, _1 = . has a very simple 1-state trellis

structure. On the other hand, 1"11has a 4-state trellis diagram which is more complex than

osup
the trellis structure of _1 . This helps in reducing the closest coset decoding complexity

associated with the first stage of decoding. Standard Viterbi decoding is performed on the

received sequence using the trellis 0 sup to obtain an estimate of Vl, denoted 91. This

completes the first stage of decoding.

Second stage of decoding: To simplify the trellis decoding complexity associated with the

_supsecond stage of decoding, instead of forming the trellis 02, we form '-'2 , where any code

_strp
sequence in ,,, 2 can be written in the form ( refer section 5, part 1), ¢1(9,)+¢2(u2) _ws' sup

osupwhere w$ up is a sequence of pointsfrom fl_up and us isa code sequence in C2. _2 is

osup
chosen to be, ,os = (16,O,0o) * (16,11,4) * (16,16,I). osup_2 has a 8-state trellis structure

[10]. On the other hand, 1"l= has a 16-state trellis diagram which is more complex than

the trellis structure of °sup_2 . This helps in reducing the closest coset decoding complexity

associated with the second stage of decoding. Standard Viterbi decoding is performed on

,_supthe received sequence using the trellis ,-'2 to obtain an estimate of v2, denoted 92. This

completes the second stage of decoding.

Third stage of decoding: The third stage of decoding is identical to the second stage of

decoding discussed in example 1. The three stage decoding technique proposed by Sayegh

[6] and Tanner [7] is used to split up the decoding of _q2 into three stages. The first stage

decoding of fls is trivial. Note, the second stage of the 3-stage decoding process for _2 can
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be combined with the second stage of decoding of the multi-dimensional TCM code.

Computation Complexity - Multi-stage Decoding Algorithm: 7x = 6, kl = 3,72 =

6, k2 = 3. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 128;

osup(2) the sub-optimal distance estimates require 96 compares; (3) Viterbi decod4ng of _1

requires 3 adds. Since there are 16 cosets, the total complexity is 48 a_ds.

osup
Second stage of decoding: (i) closestcoset decoding for _2 requires 184 adds + 87

compares, which is the trellis decoding complexity of the (16, 11, 4) code [10]. Since there

are 16 cosets, the total complexity is 2944 adds and 1392 compares.

Third stage of decoding: (1) the multi-stage decoding technique for _2 requires 58 adds

and 29 compares. Note, only the decoding complexity of the (16, 15, 2) code has been taken

into account. The decoding complexity of the (16, 11, 4) code is included in the second stage

of decoding for reasons mentioned above. Hence, total complexity is 254.62 adds + 150.81

compares + 8 distance computations per 2-dimensions.

Figure 4 shows the simulation results of the bit-error-performance of multi-dimensional

TCM code. As can be seen from the figure, the code achieves a 4.2 dB coding gain over

uncoded QPSK at 10 -6 bit error rate. An upper bound on the bit-error-rate of the proposed

code using the multi-stage decoding algorithm is also shown in figure 4.

Pietrobon et. al. do not have a comparable code over 16 × 2-dimensions, hence comparison

will be made with a 2 × 2-dimensional code over 8PSK with 7 = 7 and phase invaxiance =

90 °. The spectral efficiency and phase invariance of both codes is the same. This Pietrobon

et. al. code is the best in performance among all the codes listed in [2] for rate 2 bits/symbol.

The performance curve of this code, taken from [8], has also been shown in the figure. The

complexity of the Pietrobon code is about 2 times higher than that of the proposed code,

however, the proposed code has performance comparable to the Pietrobon code at high SNR.

Example 3: Consider the case of m = 2, q = 3 and choose S = 8PSK. Hence g = 3. Choose
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Co,, = C0,2 = Co,a = C,,2 = C1,3 = (2,2,1) code, C2,a = (2, 1, 2) code and C_,1 = C_,2 =

C1,1 = (2,0,00) code. The minimum symbol distance of A0 = A(f_o) is 1, for A1 = A(fll) is 1

and for A2 = X(fl2) is 2 ( refer section 3, part 1 ). The other distance parameters associated

with the three block modulation codes can be found by a straightforward application of the

distance theorem in [4]. A rate-l/2 code with 16-states ( fourth code in Table 1 of part 1

) will be used at the first level. Let us call this code C1. A rate-2/3 code with 16-states (

second code in Table 2 of part 1 ) will be used at the second level. Let us call this code

C2. The phase invariance of the resulting code is 180 °. The spectral efficiency is equal to

(1 + 2 + 1)/2 = 2 bits/symbol. The mappings _bl and _b2 have been chosen to be linear.

The minimum symbol distance of the code is ( refer theorem 6, part 1 ), min{2 , 3.1,5.

1} = 2. Since the minimum symbol distance of the overall modulation code is the minimum

symbol distance of A2, hence the minimum product distance, A_ of the modulation code is

(4.0) 2 -- 16.0 ( refer [4] ).

The decoding of this code is carried out in three stages and proceeds exactly as discussed

in section 5 ( part 1 ). The second and third stage of decoding can actually be combined

into one single stage of decoding. The computational complexity calculated below assumes

that the second and third decoding stages have been combined.

The minimum symbol distance of the first stage is chosen to be higher than the rest of

the decoding stages, so as to reduce the effect of error propagation.

Computation ComplexiW- Multi-stage Decoding Algorithm: 71 = 4, kl = 1,72 =

4, k2 = 2. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 16; (2)

the sub-optimal distance estimates require 12 compares; (3) Viterbi decoding of 121 requires

1 add. Since there axe 4 cosets, the total complexity is 4 adds.

Second and third stage of decoding: (1) Viterbi decoding of f12 is 2 adds + 1 compares.

Since there are 8 cosets, the total complexity is 16 adds and 8 compares. Therefore, total
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complexity is 58 adds + 42 compares+ 8 distancecomputationsper 2-dlmensions.

Figure 5 showsthe simulation resultsof the bit-error-performanceof the proposedcode.

The performanceof this code will be comparedwith the 16-staterate-2/3 codeover 8PSK

constructed by Schlegeland Costello [12] for the Rayleigh fading channel. The spectral

efficiencyfor both codesis the same,howeverthe Schlegel-Costellocodehasno phaseinvazi-

ance.The performancecurve of the Schlegel-Costellocodeis alsoshownin figure 5. As can

be seenfrom the figure, the proposedcodeoutperformsthe Schlegel-Costellocodeby about

1.6 dB at 10-4 bit error rate. In a_idition, the complexity of the Schlegel-Costellocodeis

64adds+ 48 compares+ 8 distancecomputationsper 2-dimensionswhich is slightly higher

than that of the proposedcode.

Example 4: Considerthe caseof m = 8, q = 4 and choose S = 8PSK. Hence _ = 3. Choose

C0,1 = C_,2 = C3,2 = C3,3 = (8, 4, 4) RM code, C0,2 = C1,2 = (8, 7, 2) code, Co,3 = CI,_ =

C2,3 = (8, 8, 1) code and C1,1 = C2,1 = C3,1 = (8, 0, oo) code. A rate-3/4 code with S-states

( first code in Table 3 of part 1 ) will be used at the first level. Let us call this code C1. A

rate-2/3 code with 16-states ( second code in Table 2 of part 1 ) will be used at the second

level. Let us call this code (72. A rate-3/4 code with 64-states ( second code in Table 3 of

part 1 ) will be used at the third level. Let us call this code 6'3. The phase invariance of the

resulting code is 180 °. The spectral efficiency is equal to (3 + 2 + 3 + 8)/8 = 2 bits/symbol.

The mappings ¢1, ¢2, ¢3 and ¢4 are chosen to be linear.

The decoding of this code is carried out in four stages and proceeds in a manner similar

to that in example 2. The first stage of decoding is similar to the first stage of decoding in

osup  sup = (8,0,oo) • (8,8,1) •example 2. __1 used to simplify the decoding complexity is, ._1

(8, 8, 1). osup._ has a very simple 1-state trellis which is less complex than the 2-state trellis

of ill. The second and third stage of decoding is carried out exactly as described in section

5 ( part 1 ). The fourth stage of decoding is carried out using the multi-stage decoding

technique for fl3 ( as was explained in example 1 ). The multi-stage decoding of f13 proceeds

in two stages. The first stage of decoding decodes the code C3,2 and the second stage decodes
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the C3.3 code. The decoding of C3._ can be merged with the second stage of decoding of the

proposed code, and the decoding of C_.3 can be merged with the third stage decoding of the

proposed code. The complexity calculations given below assume that the fourth stage of

decoding of the proposed code has been merged with the previous stages.

Computation Complexity - Multi-stage Decoding Algorithm: 71 = 3,-kt = 3,72 =

4, k2 = 2, 73 = 6, k3 = 3. The branch decoding complexity is:

First stage of decoding: (1) the distance computation complexity per branch is 64; (2) the

osupsub-optimal distance estimates require 48 compares; (3) Viterbi decoding of _1 requires

7 adds. Since there are 16 cosets, the totM complexity is 112 adds.

Second stage of decoding and the 1st stage of the fourth stage of decoding: (1)

closest coset decoding complexity is 36 adds and 11 compares, which is the trellis decoding

complexity of the (8, 4, 4) code [10]. Since there are 8 cosets, the total complexity is 288

adds and 88 compares.

Third stage of decoding and the 2rid stage of the fourth stage of decoding: (1)

closest coset decoding complexity is 36 adds and 11 compares, which is the trellis decoding

complexity of the (8, 4, 4) code [10]. Since there are 16 cosets, the total complexity is

576 adds and 176 compares. Therefore, total complexity is, 202 adds + 108 compares + 8

distance computations per 2-dimensions.

Figure 6 shows the simulation results of the bit-error-performance of the proposed code.

The performance of this code will be compared with the 64-state rate-2/3 code over 8PSK

constructed by Schlegel and Costello [12] for the P_yleigh fading channel. The spectral

efficiency for both codes is the same, however the Sch.legel-CosteUo code has no phase invari-

ance. The performance curve of the Sch_legel-Costello code is also shown in figure 6. As can

be seen from the figure, the proposed code outperforms the ScMegel-Costello code by about

1.5 dB at 2 • 10 -4 bit error rate. In addition, the complexity of the ScMegel-Costello code is

256 adds + 192 compares + 8 distance computations per 2-dimensions which is higher than
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that of the proposedcode.

Example 5: A statistical model for the shadowedmobilesatellite channelhasbeendevised

by Loo [13-16]and this model hasbeenusedby other researchers[17-22]to study the error

performanceof coded modulation schemesover the MSAT channel. In Loo's model, there

are three different kinds of shadowing- light, averageand heavy.The correspondingRician

factors are6.16,5.46and -19.33dB, respectively.Therefore,in the shadowedMSAT channel,

a coded modulation system suffersvery severedistortion due to randomly changingphase

and multipath fading. Especially, if the Doppler frequency shift is large due to the motion of

vehicle, a coded modulation system faces the error floor phenomenon. We will assume that

the carrier frequency is 870 MHz and the symbol rate is 2400 symbols/sec. Due to randomly

changing phase, perfect phase synchronization is not feasible in the shadowed MSAT channel.

Therefore, differentially detected 8PSK modulation is used. We assume that the speed of

moving object is 92.88 miles/hr. The corresponding normalized fading bandwidth BT is 0.05

where B is the maximum Doppler frequency shift and T -1 is the symbol rate. To combat

burst errors, a block interleaver is used for computer simulation. The size of interleaver is

512 8DPSK symbols, and the number of rows of the block interleaver is 64 and the number

of columns is 8.

Consider the case of m = 8, q = 3. Hence, g = 3. Choose C0,x = C2,2 = (8, 4, 4) RM

code, Co,2 = Co,3 = C1,2 = C1,3 = C2,s = (8, 7, 2) code and Cl,x = C2,_ = (8, 0, oo) code. A

rate-3/4 code with 8-states ( first code in Table 3 of part 1 ) will be used at the first level.

Let us call this code C1. A rate-2/3 code with 16-states ( second code in Table 2 of part

1 ) will be used at the second level. Let us call this code C2. The phase invariance of the

resulting code is 90 °. The spectral efficiency is equal to (3 + 2 + 11)/8 = 2 bits/symbol. The

mappings ¢1 and ¢_ used at the first and second encoding levels are linear.

Decoding of the code proceeds exactly as in example 2, and as such, will not be repeated

here. The complexity calculations are also very similar to example 2, and as such details will

be omitted. The total complexity is, 69.25 adds + 31.63 compares + 8 distance computations
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per 2-dimensions.

Figure ? shows the simulation results of the bit-error-performance of the proposed code.

The performance of this code will be compared with the 16-state rate-2/3 code constructed

by Schlegel and Costello [12] ( this code is chosen, for lack of comparable complexity code

available in literature for the shadowed MSAT channel ). The spectral efficiency for both

codes is the same. The performance curve of the Schlegel-Costello code is also shown in figure

7. As can be seen from the figure, the proposed code outperforms the Schlegel-Costello code

by about 9.65 dB at 10 .4 bit error rate. Also, the proposed code faces the error floor at

around 1.4 x 10 -s bit error rate, whereas the Schlegel-Costello code faces an error floor

around 4.8 x l0 -s bit error rate. In addition, the complexity of the Schlegel-Costello code is

higher than that of the proposed code.

4. Conclusion

A simple and systematic technique of constructing multi-dimensional TCM codes using

block modulation codes and convolutional codes optimized for branch distance is proposed.

Bounds on the minimum squared Euclidean distance and minimum symbol distance of the

multi-dimensional TCM codes are derived, along with conditions on phase invariance. A

multi-stage decoding technique for the multi-dimensional TCM codes has also been proposed.

Examples constructed show that the tech.n_ique can be used to construct good codes which

have a performance/decoding complexity advantage over the codes availabl_ in literature for -

both the AWGN and fading channels.
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